3. J. D, Anderson, Phys. Fluids, 14, 2620 (1971),

4, N. A, Generalov, G. I, Kozlov, and I. E. Selezneva, Preprint Inst. Prikl, Mekh., Akad. Nauk SSSR,
No.2 (1971).

5. W. H, Christiansen and G. Tsongas, Phys, Fluids, 14, No.12 (1971),

6. R. L. Soloukhin, Proceedings of the Fourteenth International Symposium on Combustion, Pittsburg (1972).

7.  G. V. Gembarzhevskii, N. A, Generalov, and G. 1. Kozlov, Zh. Prikl. Mekh. Tekh, Fiz., No. 4 (1973).

8. S. A. Losev, V. N. Makarov, V. A, Pavlov, and O. P. Shatalov, Fiz. Goren. Vzryva, No. 4 (1973).

9. A, S, Biryukov, V. K, Konyukhov, A, I, Lukovnikov, and R. I, Serikov, Zh, Eksp. Teor. Fiz., 66,
No. 4 (1974).

10. A. 1. Varginetal.,, Zh, Tekh. Fiz., 5, No.3 (1975),

11, A, B. Britan et al., Kvantovaya Elekiron,, 1, No. 12 (1974).

12, V. N, Makarov and S, A, Losev, Fiz, Goren., Vzryva, No.5 (1975).

13. V., M. Shmelev, N, Ya. Vasilik, and A, D. Margolin, Kvantovaya Elektron., 1, No. 8 (1974).

14. A, S. D'yakov, A. K. Piskunov, and E. M. Cherkasov, Kvantovaya Elektron., 2, No.7 (1975),

15. R. Jennaut, R, Vergas, and S. Hadley, AIAA, Paper No. 178 (1974).

16. N. N. Kudryavtsev, S. S. Novikov, and I, B, Svetlichnyi, Inzh. -Fiz. Zh., 35, No. 4 (1978).

RADIATION OF A PERFORATED CYLINDER

A, V. Rumyantsev, O. N, Bryukhanov, UDC 536.24
and V., E, Fedyanin

The generalized zonal method is used to find the energy radiated by a perforated cylinder. The
existence of a range of geometric optical parameters is established, wherein the perforated cy-
linder radiates more energy than a continuous cylinder.

We will consider a cylindrical surface uniformly perforated by orifices. We will find the resultant ener-
gy flux (or surface density) radiated by the cylinder at specified temperature, optical properties, and surface
geometry,

We make the following assumptions: 1) the cylinder is infinitely long; 2) the unperforated portion of the
cylinder is diffuse-gray and homogeneous; 3) the surfaces, inner surface 1 and outer surface 2, are isother-
mal while Ty = T, = T > 0; 4) the medium is diathermal.

We close the surfaces 1, 2 of the perforated cylinder with a coaxially located black (¢ = 1) continuous
cylindrical surface 3 of arbitrary diameter Dj; and temperature T; = 0°K, We now apply the generalized zonal
method of [1] to this system of surfaces.

For the resultant fluxes from each zone, we obtain the following expressions:

Qfy = — &Ey¢i; (1 —B) Fy, 1)
Qfz = — &E 13¢5 (1 — Bo) Fo, 2)
Qfa == Eyq (817931 1~ €2P32) Fg. 3)

where y-! = 1-Rypy; Eqg = o(,T4 ; B = F/Fy; F is the area of the perforations; Fy is the geometric area of the
cylinder surface.

In Egs. (1)~ (3) the mean angular radiation coefficients (ARC) yjk can be expressed in terms of the average
ARC ¢q; of the perforated cylinder itself with the aid of the closure and reciprocity equations, Thus, the prob-
lem reduces to determination of ¢y;.

It follows from the physical meaning of the mean angular radiation coefficient that
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Fig. 1. Ratio of energy radiated by perforated cylinder to
energy radiated from continuous black cylinder; 1) function

EefBmax)s 2) €op(Bo)-

Fig. 2. Ratio of energy fluxes radiated by perforated and
continuous cylinders, the function eef/e,.
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Fig. 3. Ratio of energy fluxes of outer (curves €ef;/€;) and inner (gefy/
g1) surfaces of perforated cylinder to energy flux of solid cylinder. Curve

1, €ef1/51 vS Bmax)y-

Fig. 4. Ratio of energy radiated by inner surface of perforated cylinder
through orifices 8 to energy radiated by outer continuous surface of area

BF,.

¢y =1—8.

Using this value for ¢;(, for the remaining mean ARC's appearing in Egs. (1)-(3) we will have
Pis =B @z =1 P =C10(1—B) @u=0(1—f),
where £ = D/D;. Substituion of Eq. (5) in Egs. (1)-(3) produces
Qfy = —&,0,T% (1 —B) Fy = —eef10,T*F,,

Gfa = —e,0,T* (1 —B) Fy=— Eefs00T*F,,

Qfﬂﬁpﬂ—m<LF%ﬁﬂﬁE%mﬂm
2
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where
vi=p+e(l —B) 9)

It follows from Egs. (6)-(8) that the perforated cylinder radiates an energy flux equal to Qf = Qg + Qp, =
Qf; and is described by Eq. (8).

We now write the flux radiated by the perforated cylinder in dimensionless form, referenced to the ener-
gy flux radiated by a continuous black cylinder:

=Y e a—pf1- -2 py). 10
et = = el =B (15 ) 10

The function £4¢(gj, b) has a maximum within the range 0 < g; < 1,which for the special case g =& =¢ is
achieved at the values

Ve@—e)—e2—¢)
Poac T —gE—eg (11)

In the range 0 < € <1 and 0 <8 < f3,, where for &y = ¢, = € B is defined by

1 —¢
2—e’

Bo = (12)
the function e.¢(g, B) > ¢, i.e., in the range of € and B values indicated the perforated cylinder radiates more
than a continuous one. Figure 1 shows graphs of the function gg¢(e, B) for various values of ¢ together with
EofBmax), curve 1, and &¢f(8,), curve 2, for varying € values,

The greater energy effectiveness of the perforated cylinder as compared to the continuous in the param-
eter range € <1 and B < B is shown more clearly by the curves of Fig. 2, where for the case &, = ¢, = € the
function €ef’e is shown, representing the ratio of the energy fluxes radiated by these cylinders. The difference
between the fluxes radiated is greater, the less € and 8, As g; = 0 it tends to 2(1— 8), while for 8- 0 it
reaches its maximum value of two. The function (eef /ea)e — o is shown in Fig. 2 by the curve g =0,

Figure 3 showsthe functions €ef,/€, and eefi/€;, describing the ratios of energies radiated by the outer and
inner surfaces of the perforated cylinder to the energy radiated by a continuous cylinder., The first function
has no singularities, is independent of €,, and decreases monotonically [as (1 — 8)]with growth in 8, The second
function has a maximum at

(Bmax)s = Vle‘__—:; . (13)

This is shown by curve 1 of Fig, 3.

A comparison of the energy radiated by the inner surface through the orifices 8 with the energy which
would be radiated by an outer surface of area 8F, with the same emissivity is shown in Fig, 4, which presents
graphs of the function eefy/Be; vs B (solid curves) and vsey (dashed curves). It is evident that there exist ranges
of 8 and &y values at which gqfy > 8€,.

We find this condition to be satisfied in the parameter range 0 < g; <1 and 0 <8 < (38;);, where

]—81

(Bo)s =

14
e, 14)

The difference in the radiant fluxes is more marked, the smaller 8 and ;.

Peculiarities develop in the radiation of the inner surface of the perforated cylinder due to the fact that
it radiates its energy through small orificies. This is equivalent to increasing the emissivity of the radiating
surface, and thus, the energy radiated by it. For this reason the effective emissivity of the perforated cylin-
der differs from the emissivity of the outer surface and has the peculiarities noted above,

For &; = €5 = 1 it follows from Eq. (9) that eef = 1—32, i.e., in this case the relative radiant energy from
the perforated cylinder is determined solely by the geometric factor, the value of the ratio of the perforations
to the geometric area of the cylinder.

Analysis of data from [2] on heat exchange between perforated and continuous coaxial cylinders shows
that the results obtained are comparable, and that the conclusions arrived at herein are correct.
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NOTATION

T is the temperature, °K;

€ is the net emissivity (degree of blackness);

D is the cylinder diameter;

ik is the mean angular coefficient of radiation (ARC) between i-th and k-th elements of finite area
surface;

R " is the coefficient of reflection;

o is the Stefan—Boltzmann constant;

¢ is the dimensionless parameter equal to the ratio of the diameter of coaxial cylinders;

B is the ratio of the total area of perforations to the geometric area of the cylinder;

Bmax is the B value at which radiant energy from the surface is maximum;

By B is the value below which radiant energy of the perforated cylinder is equal to or greater than the
radiant energy of the continuous cylinder;

Qf is the resultant radiation flux,
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EFFECT OF THE ELASTIC FACTOR ON THE
HYDRODYNAMIC STABILITY OF A
STRUCTURALLY VISCOUS MEDIUM

L. I. Ionochkina, A. S, Romanov, UDC 532,135
and S. L. Simkhovich

The effect of relaxation phenomena on the hydrodynamic stability of the plane gradient flow
of a structurally viscous medium is investigated using linear theory.

There has recently been interest in various problems of the hydrodynamics of structurally viscous
liquids [1, 2] due to the wide use of these media in modern technological processes. These media have a com-
plex physicochemical structure which leads to the appearance of relaxational mechanical properties in addition
to Newtonian properties.

The simplest rheological law that simultaneously takes into account the relaxational and Newtonian prop-
erties of structurally viscous media can be postulated, e.g., in the form
1 0

~E—Tij:=21’](€2)F,~j, Q:V2FijFij . (1)

1.
ij
T

M

Here T is the characteristic relaxation time (the " Maxwellian" time); (%), apparent viscosity, which is dif-
ferent indifferent intervals of the variation of the intensity of the velocity deformation tensor Q [3]. If Q= Q4 (24 is a
characteristic of the medium), then () = n* + 1/Q, n* is the plastic dynamic viscosity, and 7, is the limiting
shear stress. When @ < Qy, 1(2) depends monotonically on  within the limits 7(0) = n (2 =n(Q), and () »
n*.

The motion of an incompressible structurally viscous medium can be described by the following system
of equations of motion:

au, d ép . 4 oU;
- - U, U= — 2 T Tijs =0, 2)
ot Ox; 0x; 0x; dx;

where Tij is given by Eq. (1).
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