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R A D I A T I O N  OF A P E R F O R A T E D  C Y L I N D E R  

A.  V. R u m y a n t s e v ,  O. N.  B r y u k h a n o v ,  
a n d  V. E.  F e d y a n i n  

UDC 536.24 

The generalized zonal method is used to find the energy radiated by a perforated cylinder.  The 
existence of a range of geometr ic  optical pa rame te r s  is established,  wherein the perfora ted  cy-  
l inder radiates more  energy than a continuous cylinder.  

We will consider a cylindrical  surface uniformly perfora ted  by orif ices.  We will find the resultant  ene r -  
gy flux (or surface density) radiated by the cylinder at specified tempera ture ,  optical p roper t i es ,  and surface 
geometry.  

We make the following assumptions:  1) the cylinder is infinitely long; 2) the tmperforated portion of the 
cylinder is d i f fuse-gray and homogeneous;  3) the sur faces ,  inner surface 1 and outer surface 2, are  i so ther -  
mal while T1 = T 2 = T > 0; 4) the medium is diathermal.  

We close the surfaces  1, 2 of the perfora ted  cylinder with a coaxially located black (e = 1) continuous 
cylindrical  surface 3 of a rb i t r a ry  d iameter  D 3 and tempera ture  T 3 = 0~ We now apply the general ized zonal 
method of [1] to this system of surfaces .  

For  the resul tant  fluxes from each zone, we obtain the following express ions :  

Qh . . . .  e,E,37~, 3 (I -- ~) F 0, 

Qf2 = - -  E2EI3(~23 ( |  - -  ~0) F0 ,  

Qf.~ =: E,~ (e,~%, 'i- e2%2) F3, 

(I) 

(2) 

(3) 

where y-1 = 1-I~i~11 ; El3 = ~0 T4 ;/3 = F/F0; F is the area of the perforat ions;  F 0 is the geometr ic  area of the 
cylinder surface.  

In Eqs. (1)-(3) the mean angular radiation coefficients (ARC) ~0ik can be expressed in t e rms  of the average 
ARC ~11 of the perforated cylinder itself with the aid of the closure and rec iproci ty  equations. Thus,  the p rob-  
lem reduces to determination of ~11. 

It follows f rom the physical  meaning of the mean angular radiation coefficient that 
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Fig. 1. Rat io  of energy radia ted by pe r fo ra ted  cyl inder  to 
energy  radia ted f r o m  continuous black cyl inder;  1) function 

ge f~max) ;  2) gef(~o)- 

Fig. 2. Ratio of energy  fluxes radiated by pe r fo ra ted  and 
continuous cy l inders ,  the function eef/e 2. 
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Fig. 3. Rat io  of energy fluxes of outer  (curves eef2/e2) and inner (eefl/ 
q )  su r faces  of pe r fo ra t ed  cylinder to energy  flux of solid cylinder.  Curve 

1, e e f / q  vs (flmax)p 

Fig. 4. Rat io  of energy  radia ted by inner sur face  of pe r fo ra t ed  cylinder 
through or i f ices  B to energy radia ted by outer  continuous surface  of a rea  
~F0. 

W,, = ! - -  8. 

Using this value for  r for  the r emain ing  mean  ARC's  appear ing  in Eqs.  (1)-(3) we will have 

�9 ,3 =: 8; ~ 3  = 1; w3, = ~ ( I  - 8 ) ;  ~ ,~  = ~ ( l  - - ~ ) ,  

where ~ = D/D 3. Substituion of Eq. (5) in Eqs. (1)-(3) produces  

Qh = - -  e,goT4Y (l - -  [3) Fo ~ - -  ~efi%T4Fo, 

~ f 2  ----- - -  r e %  T 4  (1 - -  13) Fo ~-~ ~ eef26oT~Fo, 

Qf.~ = e2ooT4 (l--[3) ( 1-!- e.~_t [3y)Fo---~eef6oT'F o, 
E 2  

(4) 

(5) 

(6) 

(7) 

( s )  

1334 



where 

v- '=  ~ +~,(l -D). (9) 

It follows f rom Eqs. (6)-(8) that the per fora ted  cylinder radiates  an energy flux equal to Qf = Qfl + Qf2 = 
Qf3 and is descr ibed by Eq. (8). 

We now write the flux radiated by the per fora ted  cylinder in dimensionless  fo rm,  referenced to the e n e r -  
gy flux radiated by a continuous black cyl inder:  

eel---- Qf - e~(1 --[~) ( 1 e~ ~y) .  (10) 
%T*Fo , " e2 

The function eel(el, b) has a maximum within the range 0 < a i < 1,which for  the special  case e l = e 2 = a  is 
achieved at the values 

(1 --- e) (2 -- e) (ii) 

In the range 0 < e < i and 0 </] </3o, where for e I = e 2 = e/3 o is defined by 

l--e 
= - - ,  (12) ~o 2 - - e  

the function ~ef(~, /]) > e, i .e. ,  in the range of e and ~ values indicated the perforated cyl inder  radiates  more  
than a continuous one. Figure 1 shows graphs of the function eel(e, /]) for various values of e together  with 
eef(~max) , curve 1, and aef(~o), curve 2, for  varying e values. 

The grea te r  energy effect iveness of the perfora ted  cylinder as compared to the continuous in the p a r a m -  
eter  range e < I and/] < 50 is shown more  clearly by the curves of Fig. 2, where for the case el = e2 = e the 
function eef/e is shown, represent ing  the rat io of the energy fluxes radiated by these cyl inders .  The difference 
between the fluxes radiated is g rea te r ,  the less e and/]. As e i ~ 0 it tends to 2 ( 1 -  ~), while for/3- . .  0 it 
reaches  its maximum value of two. The function ( e e f / ~ ) a  i ~ 0  is shown in Fig.  2 by the curve a l=0 .  

Figure 3 shows the funetions eef2/e2 and eefl/el, descr ibing the ra t ios  of energies  radiated by the outer and 
inner sur faces  of the per fora ted  cylinder to the energy radiated by a continuous cylinder.  The f i r s t  function 
has no s ingular i t ies ,  is independent of e 2, and dec reases  monotonically [as (1 - f l ) ]  with growth in/3. The second 
function has a maximum at 

(~max)t -- 1-----~f t (13) 

This is shown by curve 1 of Fig. 3. 

A compar ison of the energy radiated by the inner surface through the or i f ices  fl with the energy which 
would be radiated by an outer  surface of a r e a / ] F  0 with the same emiss iv i ty  is shown in Fig. 4, which presents  
graphs of the function eeh//3el vs ~ (solid curves) and vs el (dashed curves).  It is evident that there exist  ranges 
of/3 and el values at which cefl >flr 

We find this condition to be satisfied in the pa rame te r  range 0 < e i < 1 and 0 </3 < (fl0)l, where 

([3o), .__ l - -e ,  (14) 
2 - - e t  

The difference in the radiant fluxes is more  marked,  the smal le r / ]  and el. 

Pecul iar i t ies  develop in the radiation of the inner surface of the perforated cylinder due to the fact that 
it radiates its energy through small  or if icies .  This is equivalent to increasing the emiss iv i ty  of the radiat ing 
surface,  and thus, the energy radiated by it. For  this reason the effective emiss ivi ty  of the per fora ted  cylin-  
der differs f rom the emiss ivi ty  of the outer surface and has the peculiar i t ies  noted above. 

For  el = e2 = 1 it follows f rom Eq. (9) that eef = 1 - / 3  2, i .e. ,  in this case the relative radiant  energy f rom 
the perfora ted  cylinder is determined solely by the geometr ic  fac tor ,  the value of the rat io of the perforat ions  
to the geometr ic  area of the cylinder. 

Analysis  of data f rom [2] on heat exchange between perfora ted  and continuous coaxial cyl inders  shows 
that the resul ts  obtained are  comparable ,  and that the conclusions ar r ived  at herein are cor rec t .  
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N O T A T I O N  

is the t empera tu re ,  OK; 
is the net  emiss iv i ty  (degree of blackness);  
is  the cyl inder  d iamete r ;  
is the mean angular  coefficient  of radiat ion (ARC) between i- th and k-th e lements  of finite a rea  
sur face ;  
Is the coeff icient  of ref lect ion;  
i s  the S t e fan -Bo l t zmann  constant; 
i s  the d imensionless  p a r a m e t e r  equal to the rat io  of the d iamete r  of coaxial cy l inders ;  
is the ra t io  of the total a r ea  of per fora t ions  to the geomet r ic  a r ea  of the cyl inder ;  
is the flvalue at which radiant  energy f rom the surface  is maximum;  
is the value below which r ad ian t  energy  of the per fora ted  cyl inder  is equal to o r  g r e a t e r  than the 
radiant  ene rgy  of the e o n t i n u o u s  cyl inder ;  
i s  the resu l tan t  radiat ion flux. 
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The effect  of re laxat ion phenomena on the hydrodynamic stabil i ty of the plane gradient  flow 
of a s t ruc tu ra l ly  viscous  medium is investigated using l inear  theory.  

There  has recent ly  been in te res t  in various problems  of the hydrodynamics of s t ruc tura l ly  viscous 
liquids [1, 2] due to the wide use of these media  in modern  technological  p roces se s .  These media have a com- 
plex physicochemical  s t ruc tu re  which leads to the appearance of relaxat ional  mechanical  p roper t i es  in addition 
to Newtonian p roper t i e s .  

The s i m p l e s t  rheological  law that s imultaneously takes into account the relaxat ional  and Newtonian prop-  
e r t i e s  of s t ruc tura l ly  viscous  media can be postulated,  e .g . ,  in the fo rm 

l 0 
Tij - -  - -  ri.J = 2rl (-Q) Fij, Q = ]/"TFI,,Fij �9 (1) 

T,, Ot 

Here  T M is the cha rac te r i s t i c  re laxat ion t ime (the "Maxwellian" t ime);  r l (~,  apparent  v iscos i ty ,  which is dif-  
fe ren t  in di f ferent  in te rva ls  of the var ia t ion  of the intensi ty of the veloci ty  deformat ion t ensor  ~ [3]. If ~2_> f~l (~21 Is a 
cha rac t e r i s t i c  of the medium),  then y{~) = r/* + V0/~ , r~* iS the plas t ic  dynamic v iscos i ty ,  and r 0 is the l imiting 
shear  s t r e s s .  When $2 ~ ~1, 11 (~2) depends monotonically on a within the l imits  7/(0) - 77 (~ ~ ~(12t), and 7/(QI) >> 

7*. 

The motion of an incompress ib le  s t ruc tura l ly  viscous medium can be descr ibed  by the following sys tem 
of equations of motion: 

-O-.U-L -.- U, ~ Ut - dp 0 OU, __ O, (2) 
Ot dx~ : Ox~ xii, Oxt 

where r i j  is given by Eq. (1). 
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